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In this paper, the imaginary-time path-integral representation of the canonical partition function of a quan-
tum system and nonequilibrium work fluctuation relations are combined to yield methods for computing
free-energy differences in quantum systems using nonequilibrium processes. The path-integral representation is
isomorphic to the configurational partition function of a classical field theory, to which a natural but fictitious
Hamiltonian dynamics is associated. It is shown that if this system is prepared in an equilibrium state, after
which a control parameter in the fictitious Hamiltonian is changed in a finite time, then formally the Jarzynski
nonequilibrium work relation and the Crooks fluctuation relation hold, where work is defined as the change in
the energy as given by the fictitious Hamiltonian. Since the energy diverges for the classical field theory in
canonical equilibrium, two regularization methods are introduced which limit the number of degrees of free-
dom to be finite. The numerical applicability of the methods is demonstrated for a quartic double-well potential
with varying asymmetry. A general parameter-free smoothing procedure for the work distribution functions is
useful in this context.
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I. INTRODUCTION

A number of relations valid in the far from equilibrium
regime have appeared in the last fifteen years �1–8� that
show intriguing relationships between fluctuations in non-
equilibrium systems governed either by deterministic or sto-
chastic dynamics. Among these relations, the Jarzynski �5,6�
and Crooks relations �7,8� provide a means to compute the
free-energy difference between two classical systems by use
of a control parameter that switches the system from one
ensemble to another in a well-defined manner. The extension
of these relations to quantum systems has been analyzed re-
cently by several authors �9–14�. Current methods of calcu-
lating free-energy differences in quantum systems using non-
equilibrium processes rely on the knowledge of the quantum
history of the system which, while yielding a conceptually
appealing picture, cannot provide a reasonable scheme for
the computation of free-energy differences in practical appli-
cations. The challenges associated with constructing the cor-
rect coherent quantum dynamics make the approach difficult
to implement.

The path-integral representation of the canonical partition
function is based on mapping a quantum system at finite
temperature onto a classical system with additional degrees
of freedom �15–17�. A nonequilibrium process can be carried
out on this isomorphic classical system along a well-defined
trajectory in fictitious time. As will be demonstrated, the
Jarzynski and Crooks relations are valid for such a process
provided conditions analogous to the ones required for the
relations in a classical system are met. As a consequence,
quantum free energies using fictitious nonequilibrium classi-
cal processes can be obtained using the path-integral repre-
sentation. The path-integral formulation, however, involves

an infinite number of degrees of freedom, and, as a result,
nonequilibrium dynamical processes in this representation
could lead to divergences which need to be regularized. The
practicality of the method depends sensitively on the rate of
convergence of properties determined from the regularized
path integral to their true quantum values, an issue that is
given considerable attention in this paper and the following
paper in the series, which treats the case of a harmonic os-
cillator in detail �18�.

The paper is organized as follows. In Sec. II, the path-
integral formalism and two equilibrium methods to compute
free energy differences are reviewed. The Jarzynski nonequi-
librium work relation and the Crooks fluctuation relation us-
ing fictitious nonequilibrium processes are derived in Sec.
III. In Sec. IV, the subtleties associated with the divergence
of the total energy and work of a system with an infinite
number of degrees of freedom are discussed, and two regu-
larization methods are introduced. The first one is based on
the Fourier representation of closed paths representing quan-
tum particles and the second is based on a spatial discretiza-
tion of the closed paths. In Sec. V, the nonequilibrium free
energy method is applied numerically to the free energy of
a double-well potential of quartic form as the asymmetry
between the wells is varied. The conclusions are given in
Sec. VI.

II. SYSTEM AND DEFINITIONS

Consider a quantum system with a Hamiltonian of the

form Ĥ���= T̂+ V̂ with T̂= p̂2 / �2m� and V̂=V�x̂ ,��. For sim-
plicity of presentation, the position operator x̂ and the asso-
ciated momentum operator p̂ here are taken to be one dimen-

PHYSICAL REVIEW E 78, 041103 �2008�

1539-3755/2008/78�4�/041103�11� ©2008 The American Physical Society041103-1

http://dx.doi.org/10.1103/PhysRevE.78.041103


sional though the extension of the analysis to higher
dimensional systems is straightforward. Note that the poten-
tial energy V depends on a control parameter � which is
independent of the configuration of the system. The canoni-
cal partition function of this system at an inverse temperature
� is defined by

Z��� = Tr e−�Ĥ���, �1�

which is related to the free energy by

Z��� = e−�F���. �2�

The partition function can be written in path-integral form
as �15,16�

Z��� =� Dxe−�1/��S�x,��, �3�

where the integral is over closed paths x�s� �i.e., x����
=x�0�� and the Euclidean action S is a functional of x given
by

S�x,�� = �
0

��

ds�1

2
m�dx

ds
�2

+ V�x,��	 . �4�

Here and below the s dependence of x in integrals over s will
always be implied. Due to the cyclic property of the trace,
the quantum mechanical equilibrium ensemble average


A��
qm=Tr�Â exp�−�Ĥ����
 /Z��� of an operator A�x̂� can be

written in the path-integral formulation as


A��
qm =

1

Z��� � DxĀ�x,��e−�1/��S�x,�� = 
Ā�x,����, �5�

where 
. . .�� denotes a path-integral average
1

Z����Dx¯e−�1/��S�x,�� and Ā denotes the imaginary time av-
erage

Ā�x,�� =
1

��
�

0

��

dsA„x�s�,�… . �6�

Note that the path-integral average of a function of a single
imaginary time point, 
A(x�s*�)��, does not depend on the
choice of the time point s*, due to the imaginary time trans-
lational invariance of the Euclidean action. One may there-
fore replace 
A(x�s*�)�� by the imaginary time average


Ā�x���, which is often advantageous for reasons of compu-
tational efficiency.

Equation �5� defines the equilibrium ensemble average of
a general functional A�x ,�� of the path x�s�, which could
also be in general a function of �. Note that for multiple-
particle systems, one needs to incorporate exchange effects
associated with quantum statistics �15,16�.

In the context of equilibrium statistical mechanics, the
free-energy difference between two systems characterized by
different values of the control parameter � can be computed
in this picture through the so-called thermodynamic integra-
tion method, and is given by

�F = �
�A

�B

d�� 1

��
�

0

��

ds
�V�x,��

�� �
�

= �
�A

�B

d�� �V

��
�x,���

�

,

�7�

where the free-energy change refers to the difference be-
tween the initial and final states through � �i.e., �F=F��B�
−F��A��. Alternatively, one can compute the free-energy
change directly using the following identities �15�:

�F = −
1

�
ln�exp�−

1

�
�S�x,�B� − S�x,�A��	�

�A

= −
1

�
ln
exp�− ��V̄�x,�B� − V̄�x,�A�����A

. �8�

In the classical limit, the closed paths x�s� transform into a
point x and Eqs. �7� and �8� transform into the well-known
classical expressions �19,20�.

III. NONEQUILIBRIUM RELATIONS

The nonequilibrium relations derived in this section per-
tain to a nonequilibrium process in fictitious time. To con-
struct the fictitious dynamics, a new field p�s� is introduced
which is also periodic in imaginary time, satisfying p�s�
= p�s+���. By multiplying the path-integral representation
of the partition function in Eq. �3� by

� Dp exp�−
1

�
�

0

��

ds
p2

2�� =
1

C
, �9�

where C is a normalization constant and � is an arbitrary
fictitious mass, one obtains

Z��� = C� DxDp exp�− �1/��S�x,�� −
1

�
� ds

p2

2�
	 .

�10�

Using Eq. �4�, this equation can be cast in the form of a
classical partition function

Z��� = C� DxDpe−�H�x,p,��, �11�

where the fictitious Hamiltonian is given by

H�x,p,�� = �
0

1

du� p2

2�
+

1

2
�� dx

du
�2

+ V�x,��	 . �12�

Here, a scaled imaginary time variable u=s / ����, has been
introduced, while

� =
m

�2�2 .

Equations �11� and �12� correspond to the thermal field
theory of a classical closed elastic string of unit length in one
dimension with mass � and string tension �.

Recently, Schöll-Paschinger and Dellago showed that
Jarzynski’s nonequilibrium work relation �5,6� holds for a
wide class of classical deterministic systems with a finite
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number of degrees of freedom �21�. It was demonstrated that
if the dynamics of a system for fixed values of � admits an
invariant distribution of the system plus bath equal to the
canonical distribution at an inverse temperature � multiplied
by a function dependent on the bath variables only, then the
free-energy difference can be found from

e−��F = 
exp�− �W���A
, �13�

where the average is over repetitions of a nonequilibrium
process in which the system starts from a configuration
drawn from the above mentioned invariant distribution at �
=�A and is driven out of equilibrium by varying the control
parameter � in a finite amount of time � from �A to �B via an
arbitrary protocol ��t�. Furthermore, the work W done in the
process in Eq. �13� is given by

W = �
0

�

dt�̇
�H

��
.

The result of Schöll-Passinger and Dellago holds for a vari-
ety of different deterministic dynamics. Thus, for the purpose
of computing �F from Eq. �13�, any dynamical evolution
scheme can be used.

Perhaps the simplest dynamical evolution is generated by
Hamiltonian dynamics. In the current context, this dynamics
is governed by the fictitious Hamiltonian in Eq. �12�, so the
work W is also fictitious. The equations of motion for the
fields x�u , t� and p�u , t� resulting from the fictitious Hamil-
tonian are

�x

�t
=

	H�x,p,��
	p�u�

=
p

�
, �14a�

�p

�t
= −

	H�x,p,��
	x�u�

= �
�2x

�u2 −
�

�x
V�x,�� . �14b�

Equations �14a� and �14b� are the usual equations of motion
of a single elastic string in an external potential V. It should
be stressed that these equations have no relation to the real
time evolution of the original quantum particle.

Because the system is isolated, the fictitious work done on
the system in changing the control parameter � is precisely
the difference between values of the fictitious Hamiltonian at
time � and at time 0. Introducing the convention that quan-
tities without explicit time arguments are taken at time zero,
one can thus write

W = H�x���,p���,�B� − H�x,p,�A� . �15�

Now consider the exponential average of W over initial con-
ditions drawn from the canonical equilibrium of the string at
�=�A.


e−�W��A
=

�DxDpe−�We−�H�x,p,�A�

�DxDpe−�H�x,p,�A�

=
�DxDpe−�H�x���,p���,�B�

�DxDpe−�H�x,p,�A� .

In the numerator, one can change path integration variables
from the initial field x and p to x�=x��� and p�= p���. The

Jacobian of this transformation is equal to unity due to Li-
ouville’s theorem �22�, so that


e−�W��A
=

�Dx�Dp�e−�H�x�,p�,�B�

�DxDpe−�H�x,p,�A� =
Z��B�
Z��A�

= e−��F,

�16�

which is Jarzynski’s nonequilibrium work relation, i.e., Eq.
�13�. It should be stressed that while W is fictitious work, the
resulting �F is the real quantum free-energy difference. Note
that for a process that occurs infinitely fast, i.e., the switch-
ing time �=0, one recovers Eq. �8�. For an infinitely slow
process, however, one does not recover the canonical equi-
librium expression, Eq. �7�, due to the fact that the system
evolves in isolation.

Another nonequilibrium relation, the Crooks fluctuation
relation �7,8�, can also be shown to hold in this context.
Consider a nonequilibrium process performed as stated
above, as well as in the reversed sense, i.e., starting from
configurations drawn from a canonical distribution at �=�B
and driven out of equilibrium by varying � in time from �B
to �A in the reversed direction of time; that is, with ��t�
→���− t�. Then the probability that an amount W of work is
done during the forward process can be written as

Pf�W� =� DxDp
e−�H�x,p,�A�

ZA
	�W − �

0

�

dt�̇
�H

��
�

=� Dx�Dp�
e−�We−�H�x�,p�,�B�

ZA
	�W + �

0

�

dt�̇
�H

��
�

= e�We−��FPr�− W� , �17�

where Pr�−W� is the probability that an amount of work −W
is done during the reverse process. Equation �17� is known as
the Crooks fluctuation relation �7,8�. Note that the value of
W at which the two distributions Pf�W� and Pr�−W� become
equal, which will be denoted by Wc, is precisely when Wc
=�F. Thus this relation allows �F to be computed by deter-
mining where the plots of Pf�W� and Pr�−W� versus W in-
tersect. This approach is known as the crossing method
�23,24�.

The Crooks fluctuation relation, Eq. �17�, can be extended
to a conditional ensemble in which a particular value of a
variable, called the “reaction coordinate,” is held fixed to a
value 
 �25�. The free energy f�
� at this constrained value
of the reaction coordinate is known as the potential of mean
force. Here, we consider the reaction coordinate 
 to be
given by a functional 
̃ of the position field x, and the Hamil-
tonian to take the form

H�x,p,�� = H0�x,p� + ��
̃�x�,�� . �18�

The potential of mean force f�
� is then defined as

e−�f�
� = 
	�
 − 
̃�x���0, �19�

plus an arbitrary constant, where the average is over the path
integral corresponding to H0. Defining Pf�W ,
� as the joint
probability that work W is done in the forward process with
a final value of 
 for the reaction coordinate, and Pr�W ,
� as
the joint probability for work W and initial value 
 in the
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reverse process, then one can derive analogously to Eq. �17�
that Pr�−W ,
�=e−�We��FPf�W ,
�, again using Liouville’s
theorem. Integrating this identity over W gives


	�
 − 
̃�x����B
= 
	�
 − 
̃�x�����e−��W−�F���A

. �20�

Since the objective is to get the potential of mean force, the
appearance of �F seems to be a complication. However, the
left-hand side of Eq. �20� does not correspond to the poten-
tial of mean force in Eq. �19�, since the HB and H0 ensembles
are different. Instead, from Eq. �18�, one easily shows that

	�
− 
̃�x����B

=
Z0

ZB
e−���
,�B�
	�
− 
̃�x���0, and since e−��F

=ZB /ZA, Eq. �20� becomes

e−�f�
� = c
	�
 − 
̃�x�����e−��W−��
,�B����A
, �21�

which is the path-integral analog of the result of Paramore et

al. �25� Note that c=
ZA

Z0
is a constant, which does not matter

for the potential of mean force, so that f�
� can be deter-
mined from a nonequilibrium process in a similar way as the
free energy �F.

IV. REGULARIZATION METHODS

The invariance of the volume element DxDp under
Hamiltonian dynamics is essential to derive the Jarzynski
equality in Eq. �16�, the Crooks fluctuation relation in Eq.
�17�, and its extension to constrained ensembles. However,
strictly speaking the phase-space volume element is infinite
here. The infinite volume of the phase-space volume element
is reminiscent of ultraviolet divergences in classical field
theories that arise from an infinite dimensional phase space.
For instance, the average kinetic energy of a classical elastic
string is equal to the number of degrees of freedom times
1 / �2��, but since the number of degrees of freedom of the
string is infinite, the average kinetic energy diverges. The
ultraviolet divergences present difficulties in the direct appli-
cation of the results of Schöll-Paschinger and Dellago �21� to
the elastic string, because in the definition of the work �15�,
both H�x��� , p��� ,�B� and H�x�0� , p�0� ,�A� are divergent
quantities, so W might not be well defined. Other complica-
tions would arise for dynamics with phase-space contraction,
which are not considered here.

To assess whether the fluctuation relations derived in the
previous section are meaningful for a system with an infinite
number of degrees of freedom, the divergences need to be
regularized such that a finite number M of degrees of free-
dom results. There are two general approaches to regulariz-
ing the path integral: the first is a Fourier regularization, in
which a wave vector cutoff in Fourier space is introduced,
while the other is a bead regularization, which consists of
discretizing the points of the elastic string by replacing the
continuous imaginary time s by a finely spaced lattice of
imaginary time points. In order to establish a proper theory,
the regularized quantities such as the free energy and the
distribution of fictitious work must converge to a finite limit
as the M→�, corresponding to the imaginary time lattice
spacing going to zero or the cutoff to infinity, respectively.
Such regularization is also required to obtain feasible com-
putational methods, and for these the nature of the conver-

gence �of the free energy, the work distribution, etc.� to a
finite result is important for the efficiency of the method.

While taking a finite value for M solves the infinite phase-
space volume problem for the partition function using either
of the two regularization procedures, it is a separate question
whether the distribution of work values is well defined in the
limit M→�. The work distribution is used in the Jarzynski
and Crooks relations, and is central to the nonequilibrium
methods. For any finite M, this distribution will be well de-
fined and yield information on the finite-M free-energy dif-
ference �FM. While limM→� �FM is equal to the true quan-
tum free-energy difference �F, it must be noted that there is
currently no general method to show that P�W� is well be-
haved as M→�. In Sec. V, it is demonstrated numerically
that the work distribution converges for an asymmetric
double-well potential. In the companion paper �18�, the con-
vergence of the work distribution will be shown analytically
for the specific case of a particle in a harmonic well of
changing strength, which can be solved exactly.

A. Fourier regularization

The central idea of the Fourier space regularization ap-
proach is to restrict the number of Fourier components x̃k and
p̃k of the continuous fields x�u� and p�u� to be finite, where

x̃k = �Fx�k, �22a�

p̃k = �Fp�k, �22b�

and

�Ff�k = �
0

1

due2
ikuf�u� .

Note that because x and p are periodic with period 1, k only
takes integer values. Furthermore, since x and p are real
fields, their Fourier modes satisfy x̃−k= x̃

k
* and p̃−k= p̃

k
*. In the

Fourier representation, the Hamiltonian �12� becomes

H�x̃,p̃,�� = �
k=−�

� � �p̃k�2

2�
+

1

2
m�k

2�x̃k�2� + Ṽ�x̃,�� , �23�

where x̃ and p̃ are the collections of all x̃k and p̃k, respec-
tively, and the dispersion relation is

�k = 2
k� �

m
=

2
k

��
, �24�

and

Ṽ�x̃,�� = F„V�F−1x̃,��…k=0. �25�

Note that for k�0 modes k and −k are degenerate. Given the
Taylor series for the potential, V�x ,��=a�+b�x+c�x2+d�x3

+¯, from Eq. �25� one gets

Ṽ�x̃,�� = a� + b�x̃0 + c� �
k=−�

�

�x̃k�2 + d� �
k1=−�

�

�
k2=−�

�

x̃k1
x̃k2

x̃
k1+k2

*

+ . . . . �26�
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Because of the periodic boundary conditions imposed on
the fields x�u� and p�u�, the infinite volume in phase space is
now countable. We can thus regularize the theory by impos-
ing a cutoff kc on the values of k. With a finite cutoff, the
application of Liouville’s theorem to derive Eqs. �16� and
�17� poses no problem since the Hamiltonian flow involving
M =1+2kc degrees of freedom preserves phase-space volume
for any finite M, and hence also in the limit M→�. Note that
the limit M→1 corresponds to the classical limit, as can be
seen by taking only the k=0 term in Eq. �23�.

Using this Fourier space regularization, the free energy
converges in the limit M→� as O�M−1� when used in the
above straightforward form �26�. Using so-called partial av-
eraging techniques �27�, this can be turned into a O�M−2�
convergence �26�. However, the next regularization ap-
proach, based on replacing the string by a set of beads con-
nected by springs, is a much simpler and more general way
to get an O�M−2� convergence �or higher�.

B. Bead regularization

In contrast with the Fourier regularization, in the bead
regularization procedure, the closed path x�u� is represented
by a lattice of M points. The points u=n /M of the lattice are
called beads, and their positions and momenta are denoted
by x��x1 , . . . ,xM
 and p= �p1 , . . . , pM
, respectively. Using
these variables, the partition function Z��� in Eq. �11� can be
approximated by �17�

ZM��� = � mM

4
2�2��
�M/2� dxdpe−�HM�x,p,��, �27�

where

HM�x,p,�� = �
n=1

M � pn
2

2��
+

1

2
�M�xn − xn+1�2 +

1

M
V�xn,��	 ,

�28�

and xM+1=x1, i.e., the xn form a “ring polymer.” In Eqs. �27�
and �28�, �� is the mass associated with each bead. To ensure
that the ring polymer approaches the elastic string limit as
M→�, the mass of each of the M beads has to be ��
=� /M, but for numerical applications at finite M, �� is a
free parameter.

This regularization scheme is the basis of the frequently
used path-integral molecular dynamics �PIMD� method
�17,28–30� for computing canonical equilibrium averages for
quantum systems.

To derive the bead regularization of the partition function
in Eq. �27� and the fictitious Hamiltonian, in Eq. �28�, one
usually starts from the Trotter formula for the Boltzmann
operator, i.e., �31,32�

e−�Ĥ = lim
M→�

�e−�V̂/Me−�T̂/M�M . �29�

However, it is hard to see from Eq. �29� why the conver-
gence of the free energy for large M would behave O�M−2�,
as mentioned above. The convergence properties are easier to
determine starting from the symmetric version

e−�Ĥ/M = e−�V̂/�2M�e−�T̂/Me−�V̂/�2M� + O�M−3� , �30�

which follows from the Baker-Campbell-Hausdorff formula
�33�. Equation �30� allows the Boltzmann operator to be ex-
pressed as

e−�Ĥ = �e−�V̂/�2M�e−�T̂/Me−�V̂/�2M��M + O�M−2� . �31�

When taking the trace of the Boltzmann operator to obtain
the partition sum in Eq. �1�, the first term on the right-hand
side of Eq. �31� can be rewritten using the cyclic properties
of the trace in the form of the Trotter formula �29�. Thus, for
the partition sum, the two so-called splitting methods �29�
and �31� lead to the same result. Since the latter converges as
O�M−2�, so does the former. Note that if the trace is not
taken, such as for the imaginary time propagator or for ex-
pectation values of operators which do not commute with x̂,
the two splitting methods exhibit different convergence be-
havior �34�. In particular, the convergence behavior of the
Trotter form then becomes O�M−1� �32�.

Taking the trace to get the partition sum, and the standard
technique of inserting closure relations �15–17�, one finds

ZM��� = � mM

2
��2�M/2� dx exp�− ��
n=1

M � mM

2�2�2 �xn+1 − xn�2

+ M−1V�xn�	� . �32�

Finally, multiplying the right-hand side of Eq. �32� with

1 = � �

2
��
�M/2� dp exp�− ��

n=1

M
pn

2

2��
	 , �33�

one obtains Eqs. �27� and �28�, and one sees that ZM���
converges to Z��� as O�M−2�.

The bead regularization in Eq. �28� is not as different
from the string’s Fourier representation in Eq. �23� as it may
appear at first sight, as becomes clear when Eq. �28� is writ-
ten in the Fourier representation as well. Since the beads are
discrete, the Fourier transform is also discrete and takes the
form

x̃k =
1

M
�
n=1

M

e2
ikn/Mxn, �34a�

p̃k = �
n=1

M

e2
ikn/Mpn, �34b�

where k runs from 0 to M −1. Because x̃k= x̃M+k, one can also
choose the range of k to be from −�M /2� to �M /2�, and this is
more convenient since a natural cutoff kc= �M /2� then arises.
The asymmetry between the position and the momentum
transformation in Eqs. �34a� and �34b� is necessary to have
the Fourier transformation preserve the canonical structure,
while at the same time letting the definition of x̃k in Eqs.
�22a� and �34a� coincide for M→�. Applying this transfor-
mation to the fictitious Hamiltonian in Eq. �28� gives
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H�x̃,p̃,�� = �
k=−kc

kc � �p̃k�2

2M��
+

1

2
m�k

2�x̃k�2� + Ṽ�x̃,�� , �35�

where the only real difference with the fictitious elastic string
Hamiltonian �23� �with a wave vector cutoff kc� lies in the
dispersion relation

�k =
2M

��
sin


k

M
�36�

instead of Eq. �24�. Note that for k�0, k and −k are again
degenerate, with the exception that for even M, the mode k
=−M /2 is identical to the mode k=M /2 and only one of
these should be included. Naturally, in the limit M→�, Eq.
�36� reduces to Eq. �24� for fixed k.

The potential term Ṽ in Eq. �35� is given by the same
expression �26� as for the elastic string, with all sums over
wave vectors cut off at kc. Therefore, both for the Fourier
and the bead regularization, the equations of motion in terms
of x̃n and p̃n take the form

dx̃k

dt
=

p̃k

��
, �37a�

dp̃k

dt
= − �k

2x̃k − b�	k0 − 2c�x̃k − 3d� �
q=−kc

kc

x̃qx̃k−q − ¯ ,

�37b�

where ��=� for the Fourier regularization and ��=M�� for
the bead regularization.

V. PATH-INTEGRAL SIMULATIONS

As an illustration of calculations of free-energy differ-
ences in nontrivial quantum systems, consider the difference
in free energy between a quantum particle confined in a sym-
metric quartic double-well potential VA�x� and a quartic po-
tential with a linear bias VB�x� �see Fig. 1�,

VA�x� = V0�x4 − x2� , �38a�

VB�x� = V0�x4 − x2 + x� . �38b�

The free-energy difference for a quantum particle con-
fined by the potentials VA and VB will be computed from the
Crooks fluctuation relation using the time-dependent poten-
tial V(x ,��t�)=VA�x�+��t�V0x, where we assume ��t�= t /�
and � defines the rate at which the potential is switched. Note
that �A=��0�=0 and �B=����=1. The bead regularization
will be used because of its better convergence properties
compared to the Fourier regularization.

For application of the nonequilibrium relations, the
procedure consists of drawing N initial values of the bead
positions x= �x1 , . . . ,xM
 and conjugate momenta p
= �p1 , . . . , pM
 from the canonical probability density

��x,p� = e−�HM�x,p,0�/ZA,

and propagating each phase point �xi ,pi� �i=1, . . . ,N� for-
ward to time � under the influence of the time-dependent
potential V(x ,��t�).

A. Sampling initial conditions

The sampling of initial conditions for the dynamics was
done using a Monte Carlo procedure. For systems that have
weak quantum character, i.e., with large �=m / ����2, the
harmonic part

Uh�x� =
1

2
�M�

n=1

M

�xn − xn+1�2

of HM arising from the kinetic energy operator of the quan-
tum particle, forces the bead positions xn to be near one
another. This strong harmonic potential Uh�x� makes Monte
Carlo sampling of the canonical distribution inefficient if the
sampling is based only on trial moves generated by uni-
formly chosen random displacements of the bead positions
xn. For this reason, it is helpful to use importance sampling
based on the probability density for a free particle. The pro-
cedure consists of dividing the trial configurations generated
in the Monte Carlo sampling into two types. The first type
consists of randomly displacing the centroid or center of
mass of the ring polymer. Since the potential Uh is constant
for this type of displacement, only the potential V�x ,�� de-
termines the acceptance probability of this type of move. The
second way of generating trial configurations consists of
drawing independent, nonzero Fourier modes �x̃k
 with k=1
to k= � M−1

2 � based on the probability density

P�x̃k
�r�, x̃k

�i�� =
ak



e−ak�x̃k

�r�2+x̃k
�i�2�, �39a�

where ak=�m�k
2 and x̃k

�r� and x̃k
�i� are the real and imaginary

parts of x̃k, respectively. Note that if M is even, then x̃M/2
�i�

=0 and x̃M/2
�r� is drawn from

-1.5 -1 -0.5 0 0.5 1 1.5
x

-6

-4

-2

0

2

4

V
(x

)

V
A
: λ = 0

V
B
: λ = 1

FIG. 1. Two model potentials confining a one-dimensional
quantum particle, for which the free-energy difference is deter-
mined by nonequilibrium methods in Sec. V. Note that the � values
given correspond to V�x ,�=0�=VA and V�x ,�=1�=VB.
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P�x̃M/2
�r� � =�bk



e−bkx̃M/2

�r�2
, �39b�

with bk= 1
2�m�k

2. The Fourier modes �x̃k
 are then inverted to
form the positions of the beads x for the trial configuration,
which is then accepted with probability min�1,e−��V�, where
�V is the difference in the potential between the trial and
original positions �i.e., with no harmonic contribution Uh�.
Since this procedure generates trial configurations with the
same centroid as the original configuration, �V is typically
small and most trial configurations are accepted if quantum
effects are not too large. Once a statistically independent
configuration of the ring polymer has been obtained, conju-
gate momenta p may be drawn from a Maxwell-Boltzmann
density to obtain an initial phase point for the system �cf. Eq.
�33��.

B. Dynamics

Although the numerical time propagation of the system
can be carried out in a multitude of ways, symplectic inte-
gration methods usually offer superior stability and accuracy.
The general Hamiltonian �28� is time dependent and the dy-
namics is more complicated than that of autonomous sys-
tems. Nonetheless, it can be shown that phase-space volume
still satisfies Liouville’s theorem under the dynamical flow
and that integration schemes of second and higher order can
be derived for the time-dependent potentials in the same
manner as for autonomous systems, as long as the time is
updated only after the momentum-propagation step �35�. For
our test system, we used a second-order Verlet-type integra-
tion scheme that satisfies this requirement, where first the
momenta are propagated for a half-step 	t /2 using initial
forces, then an update of the positions and the system time is
done using the current momenta by a full step 	t. The time-
dependent force is then computed at this system time using
the updated positions, and finally, a final momentum update
of a half-step 	t /2 is carried out. It is readily established that
a trajectory using this scheme is exact for a Hamiltonian that
differs from HM by terms of order 	t2 at all times.

C. Estimating the free-energy difference

After each phase point has been propagated to time
�, the nonequilibrium work wi=HM(xi��� ,pi��� ,1)
−H(xi�0� ,pi�0� ,0) is computed. From a set of N initial con-
ditions and work values, the free-energy difference for the
quantum system can then be computed using the Jarzynski
estimator

− ��F = ln� 1

N
�
i=1

N

e−�wi� . �40�

Statistical uncertainties for this estimator may computed us-
ing jackknife �36� or bootstrap �37,38� methods on the
sample.

As is clear from Eq. �40�, the free-energy difference com-
puted from the exponential average of the work is sensitive
to large fluctuations in the value of the work wi and may
converge slowly if there are large tails in the work distribu-

tion �39�. The Crooks fluctuation relation, on the other hand,
is based on finding the value of the work Wc at which the
probability density of the work Pf�Wc� is equal to the prob-
ability density Pr�−Wc� of the negative of the work in the
reverse process in which initial conditions are drawn from a
canonical distribution based on the potential VB�x�. Accord-
ing to the Crooks relation in Eq. �17�, the free-energy differ-
ence is then given by �F=Wc. Calculations of the free-
energy difference based on the Crooks fluctuation relation
therefore require constructing the probability densities of the
work in the forward and reverse directions. The traditional
approach of approximating such densities is to use histo-
grams. While the use of histograms is parameter free for
systems in which the variable is confined to discrete values,
the more typical situation concerns probability densities of
continuous variables, which requires the specification of a
bin size for representing the density. Thus, in contrast to the
calculation of the free-energy difference using the Jarzynski
fluctuation relation, the use of a histogram approach to ap-
proximating probability densities leads to an undesirable pa-
rameter dependence to the free-energy differences computed
in the Crooks fluctuation approach.

In fact it is possible to reconstruct probability densities of
continuous variables without resorting to parameter-
dependent histogram methods �40�. The idea is to expand the
empirical cumulative distribution function �ECDF� obtained
after sorting the data in a series of complete orthogonal poly-
nomials. From the mathematical properties of the cumulative
distribution function, the number of terms required in the
expansion of the ECDF can be determined without user in-
tervention by application of the Kolmogorov or Kuiper’s test
�38�. From this expansion, an analytical form for the prob-
ability density can be obtained by differentiation. This ap-
proach can be applied to the probability densities of the work
for both the forward and reverse processes. The free energy
is then obtained numerically by finding the value of the work
where the analytical probability densities are equal.

In principle, any orthogonal set of polynomials can be
utilized for the expansion of the ECDF. In Ref. �40�, a Fou-
rier series for the difference between the ECDF and a linear
function was used to construct an analytical approximation
to the ECDF. Although such an approach successfully pro-
duces a fairly smooth approximation of the ECDF, the use of
oscillatory transcendental functions introduces high fre-
quency oscillations in the smooth approximation that may
lead to systematic errors when finding points of overlap of
densities, particularly when the densities intersect in regions
where there are prolonged tails. As an alternative, we con-
sider using a high-order polynomial expansion via the
Chebyshev polynomials.

To illustrate the method, consider a series of n sorted
work values �wi
 where wi�wi+1. An unbiased estimator of
the distribution function of the work P�w� is the ECDF de-
fined in the range �w1 ,wn� as

P̄�w� =
i

n
for wi � w � wi+1. �41�

To allow an expansion in Chebyshev polynomials which are
defined on the interval �−1,1�, the ECDF is mapped to that
domain using
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w̄ =
2w − w1 − wn

wn − w1
, �42�

F̄�w̄� = P̄�w� . �43�

The new ECDF F̄ can then be expanded in terms of Cheby-
shev polynomials of the first kind Tn to yield the approxima-
tion

P̄�w� � Pm�w� = Fm�w̄� =
d0



+

2



�
j=1

m

djTj�w̄� ,

where the coefficients dj are given by

dj = �
−1

1 F̄�w�Tj�w�
�1 − w2

dw .

The analytical approximation to the probability density
pm�w� in terms of m Chebyshev polynomials is then given by

pm�w� =
4


�wn − w1��j=1

m

jdjUj−1�w̄� ,

where Un are Chebyshev polynomials of the second kind
�41�. The expansion coefficients dj can be evaluated analyti-
cally using the form of the ECDF in Eq. �41�, and are given
by

d0 =
1

n
�
i=1

n

arccos�w̄i� ,

dj =
1

n
�
i=1

n
1

j
�1 − w̄i

2Uj−1�w̄i� .

In practice, one hopes that the number of polynomials m
required in the expansion of the ECDF is modest so that a
smooth approximation is obtained. What number of polyno-
mials is appropriate can be estimated using either the Kol-
mogorov �38,40� or Kuiper’s test �38�, which determine how

likely it is that the difference between the ECDF P̄�w� and its
analytical approximation Pm�w� is due to random variations.

The tests take the maximum variation between P̄ and Pm
over the sampled points and return a probability Qm that the
difference between the two cumulative distribution functions
is due to chance. A small value of Qm indicates that the
difference between the cumulative distribution functions is
significant, so that the quality of the expansion Pm is insuf-
ficient to represent the data. One therefore carries out a pro-
cess of progressively increasing the number of polynomials
m and evaluating Pm as well as Qm until the value of Qm is
larger than some threshold, say Qc=0.5.

Once analytical approximations to the probability densi-
ties of the work in the forward and reverse directions have
been obtained, the intersection point Wc is readily evaluated
by numerically searching for a solution of Pf�Wc�
= Pr�−Wc� using the Brent method �38�. The Brent method
requires that the solution be bracketed on an interval
�wmin,wmax�. Since the free-energy difference between en-

sembles are single valued, there is only one point of inter-
section of the probability densities in the forward and reverse
directions. The interval end points wmin and wmax can there-
fore be taken to be near the extremal values of the wi values
found in the simulations.

Finally, statistical uncertainties can also be computed for
the free-energy difference by repeating the calculation of the
intersection point for a series of jackknifed samples of the
data and using the variance of the free-energy differences
over the jackknife samples.

D. Simulation results

To illustrate this approach, numerical tests were carried
out to calculate the quantum free-energy difference between
systems with �=0 �symmetric quartic double-well potential�
and �=1 �biased quartic potential� with parameters �=1, �
=1, m=1, and V0=5, while the mass �� per bead was also
set to 1. The time step for the propagation was 	t=0.001
such that the fluctuations in the total energy at constant �
=0 relative to the fluctuations in potential energy were less
than 1%. The calculations were carried out at two different
switching rates, �=0.5 �fast switching� and �=100 �slow
switching�.

In Fig. 2, the free-energy difference �FM calculated using
the Crooks fluctuation relation for fast-switching process is
shown as a function of the number of beads M in the ring
polymer regularization of the path integral. The work value
Wc at which Pf�Wc�= Pr�−Wc� was based on the analytical
approximation of the empirical cumulative distribution func-
tions formed out of 1�107 independent realizations of the
nonequilibrium process in the forward and reverse direc-
tions. The inset graph in this figure clearly suggests that �FM
converges as 1 /M2, to a final value of �F=−2.35. This value
agrees with the quantum free-energy difference found by
evaluating the partition sum using the numerically deter-

mined eigenvalues of the Hamiltonians Ĥ�0� and Ĥ�1�. The
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FIG. 2. The difference in free energy for the quartic system as a
function of the level of discretization of the path integral for the
fast-switching nonequilibrium process ��=0.5�. The solid line is
drawn as a guide to the eyes, while the dotted line in the inset is a
fit to a+bM−2, as predicted by the theory, which agrees within error
bars.
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free-energy difference is not just due to the difference in
zero-point energy, which is −2.53, but to the higher energy
levels as well. Note also that the quantum contributions to
the free-energy difference lead to a quantum free-energy dif-
ference that is roughly 25% higher than the classical value of
−2.95.

In Fig. 3, the first and second cumulants of the work done
�i.e., the average and the variance of the work� in the fast
reverse process are plotted against M. As the fits in the fig-
ures show, the asymptotic convergence of both cumulants is
consistent with a O�M−2� behavior. The results presented in
this figure suggest, in general, that the work distributions
converge in the infinite M limit as O�M−2�, which can be
rationalized from the consideration of a harmonic oscillator
system �see the companion paper �18��.

The probability densities of the work and negative work
in the forward and reverse directions are shown in Fig. 4 as
histograms and expanded analytical forms. The convergence
properties of the analytical expansions of the empirical cu-
mulative distribution function were determined by the
asymptotic Kuiper’s test with a threshold value Qc of 0.5.
Typically, m=13 terms were required to reach convergence
with this choice of Qc. The probability densities shown in
Fig. 4 were estimated from 1�105 values of the work and
negative work for the nonequilibrium switching process. The
data shown are for a M =9 bead discretization of the path
integral. Note that even though the shape of the probability
densities is sensitive to the switching rate, the intersection
point of the forward and reverse densities is independent of
the rate and equal to the free-energy difference. It is apparent
from the detail of the work densities near their point of in-
tersection shown in the inset of the panels that it is difficult
to arrive at an estimate of the free-energy difference based on
noisy histograms of the work. In contrast, the analytical
forms of the probability densities lead to smooth curves and
unambiguous points of intersection.

VI. CONCLUSIONS

Nonequilibrium methods for the calculation of free-
energy differences in quantum systems in the context of the
path-integral representation of the canonical partition func-
tion have been presented. Instead of using the real quantum
dynamics of the system, the path-integral representation al-
lows a fictitious path to be defined for which the Jarzynski
and Crooks relations are valid. By evolving the ring polymer
in the path-integral representation under fictitious dynamics,
the difficulties associated with the complexity of the full evo-
lution of a quantum system are avoided. From a computa-
tional perspective, avoiding true quantum dynamics is a great
advantage, although the actual efficiency as compared to
other methods to compute free-energy differences will de-
pend greatly on implementation details and on using addi-
tional techniques such as importance sampling.

From a formal point of view, the path-integral approach
exploits the well-known isomorphism between a quantum
system and a classical system of higher dimensionality de-
scribed by a field theory. While the dynamical evolution of
the classical field is well defined, the isomorphic classical
system exhibits the typical divergent behavior of classical
field theories on short length scales, due to the infinite num-
ber of degrees of freedom. It was demonstrated that the equa-
tions of motion and field variables can be regularized using
either a wave-vector cutoff of the Fourier modes of the fields
x�u� and p�u�, or a real space discretization of the ring poly-
mer representing the quantum particle, yielding a finite num-
ber M of degrees of freedom.

A general numerical procedure for calculating the free-
energy difference between nontrivial quantum systems was
elaborated using a particle confined in a quartic potential as a
test model. General issues pertaining to sampling the initial
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FIG. 3. The first and second cumulants of the work distribution
for the reverse process for the quartic system as a function of the
level of discretization of the path integral for the fast-switching
nonequilibrium process ��=0.5�. The solid lines are a fit to a
+bM−2.
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phase points, performing the dynamics of nonautonomous
systems, and estimating free-energy differences using the ex-
ponential average of the work �Jarzynski method� and the
crossing method �Crooks approach� were discussed. A
parameter-free method for calculating the free-energy differ-
ence using the crossing of the forward and reverse work
distributions was introduced. The parameter-free method is
based on expanding the empirical cumulative distribution
function in orthogonal Chebyshev polynomials and is con-
trolled by a rigorous statistical convergence test. From these
expansions, analytical functions of the estimated forward and
reverse work distributions are then obtained from which pre-
cise values of the crossing point and hence the free energy
can be extracted.

The expansion procedure utilized here is quite general,
and can be used to construct analytical estimates of any
probability density of a single continuous variable. The ap-
proach should be particularly useful whenever the specific
value of a probability density is desired, such as in the cal-
culation of the value of the radial distribution function at
contact in a system of hard spheres. The method could also
be of use in construction of the free energy as a function of a
reaction coordinate or other parameter, where the dispensing
of parameter-dependent histograms is desired.

The numerical results indicated that for the quartic poten-
tial the work distribution converges as the regularization pa-
rameter M gets large, and hence so does the free-energy
estimate obtained from the crossing method. Although the
general convergence of the free energy and work distribution
utilized in the crossing method must be demonstrated on a
case-by-case basis, the following paper shows that for the
harmonic oscillator the work distribution and free energy
converges rigorously but that the nature of the convergence
depends on the regularization used �18�. In particular, it is

shown that the bead regularization converges faster than the
Fourier regularization.

While the focus here has been on deterministic methods
with Hamiltonian dynamics in nonequilibrium statistical me-
chanics, it is worth mentioning that an alternative to the use
of Hamiltonian dynamics is to evaluate the path-integral via
the path integral Monte Carlo �PIMC� method. Both the
Jarzynski and Crooks relations hold in this context provided
that the process is Markovian and time reversible �6–8�. Fur-
thermore, for a given regularization at finite M, one can, in
principle, also use thermostatted deterministic dynamics, for
which the Jarzynski and Crooks relations also hold �21�. The
convergence properties of these alternative nonequilibrium
processes as M→� will be assessed in future work.

Finally, it should also be noted that the dynamics gener-
ated both through deterministic and stochastic evolution is
completely artificial and generally has little to do with the
real time quantum dynamics of the system �except when
��→0�. Still, the computation of the free-energy difference
through the dynamical nonequilibrium procedure described
above yields exact quantum results in the limit M→�.
Moreover, the use of either deterministic or stochastic evo-
lution bypasses the problem of computing the real time quan-
tum dynamics and illustrates the power of path-integral
methods in practical applications.
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